DESCRIPTION:

A-FILM is a water based aliphatic alcohol finishing compound designed for use on plastic (freshly poured and screeded) concrete, to reduce the evaporation of water during finishing operations.

Conditions under which an evaporation retarder like A FILM is required can vary greatly in 'appearance' with temperature of both the day, the concrete, humidity and wind speed all contributing.

To assist the operator in determining the necessity for A FILM use please refer to the attached chart.

If the calculated evaporation rate is above 0.75kg/m²/hour then A FILM should be applied.

A-FILM will not normally interfere with subsequent toppings, tiling, render, surface coatings etc often used in industry. A-FILM is not considered to be a hazardous product. A-FILM is NOT a curing compound. A-FILM is approved by Main Roads Qld for use on concrete castings.

Surface Cure R-30, W or BE are water based curing compounds complying with AS3799 are also approved by Main Roads Qld.

DIRECTIONS FOR USE:

Pre-dilute with clean water, at a rate 1 part A-FILM +9 parts water. Apply using a low pressure backpack type spray, at a coverage of 5-7m²/L each time the surface is broken (i.e. screed, bull float, troweling).

CLEAN UP:

Use water prior to the membrane curing or use Methylated spirit and turps, 50/50.

STORAGE:

Store in a cool dry area. Do not freeze. Any spills should be adsorbed onto sand/soil and recovered into a steel drum and disposed in compliance with local government bylaws. The affected area should be hosed down with water.

PACKS:

20L & 200L
Figure A.3.2 - Evaporation from Concrete Freshly Placed on Site

The graph shows the effects of air temperature, humidity, concrete temperature and wind velocity together on the rate of evaporation of water from freshly placed and unprotected concrete. An example follows:

With air temperature at 27°C, relative humidity at 40%, concrete temperature at 27°C, and a wind velocity of 26 km/h, the rate of evaporation would be 1.6 kg/m²/hour. To determine the evaporation rate from the graph, enter the graph at the air temperature (in this case 27°C), and move vertically to intersect the curve for relative humidity encountered (here 40%). From this point move horizontally to the respective line for concrete temperature (here 27°C). Move vertically down to the respective wind velocity curve (in this case interpolating for 26 km per hour) and then horizontally to the left to intersect the scale for the rate of evaporation.

* Source: Gelber, S, 1984, "Predict evaporation rate and reduce plastic shrinkage crack", Concrete International (ACI) v5 n4, 19-22